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lecting and storing huge data volumes, or sacrificing events
coverage by sampling at coarse time granularity. We present
uView, which stands out from conventional cloud monitors
by incorporating a lightweight observability data-plane on In-
frastructure Processing Units (IPUs). Our novel architecture
leverages the proximity of IPUs to the monitored services
to tackle observability bloat. Crucially, uView’s data-plane
applies streaming data sketching techniques to continuously
process and analyze microservice’s metrics at fine time reso-
lution, without hurting application performance. We show for
several use cases that by anticipating SLO violations uView
can help (i) narrow the focus on informative observability
data, and (ii) trigger useful signals about service performance,
thus enabling timely proactive actions. Our code and artifacts
are available at: https://github.com/sands-lab/uview.

1 Introduction

Cloud-native applications consist of thousands of single-
concern, loosely-coupled microservices running on container-
ized platforms with many organizations adopting this ap-
proach [3,6,8,37,72,94]. While the shift from monolithic to
distributed design introduces many benefits (e.g., flexibility,
simplified maintenance, and efficient resource allocation), it
also introduces new system challenges (e.g., resource orches-
tration and application debugging).

The sheer number of distributed components and the in-
creased pace at which microservices are upgraded/rolled out
drastically complicates managing the health of cloud-native
applications. First, as the churn of code [22,43] and the num-
ber of distributed components expands [53, 88], the likelihood
of failures and performance changes also increases exponen-
tially. Accurate and quick debugging requires collecting sig-
nificantly more data than a monolithic design [54, 63, 92],
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Figure 1: uView enables in-situ analysis of microservice metrics
at fine time resolution. It offloads on Infrastructure Processing
Units (IPUs) both metrics processing tasks and network-related
endpoints for centralized metrics collection.

which in turns requires non-negligible compute and/or net-
work resources for the monitoring itself [105]. First, this intro-
duces a scalability challenge for monitoring, as the application
performance can degrade when sharing resources with moni-
toring processes. Second, the increase in the type of unique
microservices and the number of layers introduced by the
container ecosystem (e.g., service mesh [9], sidecars [36])
results in a significant explosion of runtime states and the
number of unique types of failures. This naturally increases
the range of data and analysis required for troubleshooting,
thus introducing an analysis challenge. Overall, managing the
health of microservice applications in an automated fashion
represents an everyday hurdle for operators.

To address the scalability challenge, Operations (Ops)
teams employ data sampling [61, 75] which reduces band-
width and compute overheads while sacrificing data quality
and accuracy (i.e., by missing events potentially relevant to
later analysis). Moreover, the coarse-grained sampling inter-
vals used by dominant metrics monitors [16,79] (e.g., in the
order of 30 seconds or 1 minute [105]) to collect system
(CPU, I/O, memory, power, etc.) and application metrics (e.g.,
key-value stores cache hits, queue lengths in sidecar prox-
ies, etc.) introduce a large mismatch between the timescale
at which metrics are sampled and the one at which applica-
tion state variations happen (in the order of ms). Ultimately,
downstream analysis tools are limited to correlating system
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events [19,84,85], and troubleshooting cascaded [39,74,116]
or metastable failures [21,28,49], all of which are typical in
microservice applications.

To address the analysis challenge, prior work has proposed
supervised techniques [23, 39,52, 117]. However, these re-
quire specialized labels, which are impractical at the speed at
which the microservices evolve. On the other hand, recently
proposed unsupervised techniques [38,56,107] do not address
the scalability challenge. More generally, these techniques
(supervised and unsupervised) fail to dynamically adjust to
significant workload changes, which affect a microservice’s
performance envelope.

To close this gap, this paper proposes uView, a system to
enable better observability by preserving monitoring timeli-
ness and accuracy, without sacrificing scalability or increasing
overhead. The goal of uView is to provide a lightweight but
general mechanism to locally analyze each service’s metrics
(e.g., application or system) at a fine temporal granularity,
and generate useful signals about service performance. Fig. |
shows a high-level overview of uView. Our architecture en-
ables monitoring of anomalous behaviors locally and deploy-
ing data hygiene algorithms before data ingestion and storage.
With the local metrics processing service, Ops teams can de-
ploy strategies to filter out irrelevant data and gain online
insights about relevant information, without exporting huge
data volumes.

In short, uView’s design builds on three observations:

Value of local data. First, a broad class of service perfor-
mance issues can be detected using local metrics at each node.
Note that while previous work highlights the need for global
knowledge to attribute a problem to a specific service within
an application, the detection is often based on locally avail-
able metrics. For example, Hindsight [114] showed how local
data can assist distributed tracing to capture relevant requests.
Fine-grained analysis. Second, whilst a service’s local met-
rics are already often generated and/or updated at a fine-
granularity (e.g., counter values updated at every request), they
are often analyzed at a coarse granularity because they are
exported to a centralized observability datastore (discussed
in § 2). Yet, analysis of this fine-grained data can yield richer
(faster, higher accuracy) insights.
IPUs adoption. Third, the recent rise of IPUs' [1,7,34] in
the data center, provides a unique opportunity to process and
analyze richer fine-granularity data without imposing CPU
overheads, interference, or bloat on the services. By offloading
system and application metrics processing to the IPU cores,
providers can save profitable server’s CPU cycles to execute
tenants’ workloads.

We found two pivotal challenges towards realizing this vi-
sion. (1) Although IPUs have been demonstrated effective
to offload several tasks in distributed systems [55, 66, 102],

'IPUs [1,7] are a class of programmable NIC devices equipped with
onboard processing units that can be programmed to execute offloaded tasks,
decoupling datacenter infrastructure from business applications.

Source Metric Timescale
App KV store [86] db_keys RPC
NoSQL DB [76] mongodb_connections
Service mesh Envoy [36] upstream_rq_active RPC
Containers cAdvisor [42] cpu_usage_seconds secondly

Table 1: Representative examples of metrics generated at differ-
ent layers of the microservice’s stack. Timescale is the frequency
at which a metric is generated and/or updated by the source.

they are typically equipped with a small number of low-
performance cores. This limits the complexity of the tasks
that can be executed on them. (2) The high code velocity of
the microservices ecosystem implies that local analysis tech-
niques must evolve quickly in real-time with minimal manual
reconfiguration effort and overheads on the host CPU.

We address both challenges by embracing data sketching
as a general but lightweight metrics analysis technique to
efficiently perform local analysis on the IPU. Sketch-based
analysis operates over multidimensional vectors of metrics
in a single pass without requiring local storage of historical
data. Additionally, while processing on the IPU eliminates
CPU processing overheads, it may introduce communication
overheads as metrics must be taken off the host boundaries. If
this is not addressed, data transfer can impose significant CPU
overheads on its own [105]. To address this, uView introduces
an efficient design to transfer data between the services and
the IPU, leveraging RDMA over the host PCle bus.

In summary, we contribute the following:

* we systematically analyze overheads of today’s production
microservice monitoring systems and motivate why fine-
grained metric analysis is a viable choice (§ 2);

* we propose an efficient framework and accompanying de-
sign choices for coordinating metrics exchange across vari-
ous layers of a microservice deployment stack with a [IPU
for localized processing (§ 3 and § 5);

» we apply sketch-based streaming analysis [65] to the do-
main of microservice debugging, as a lightweight real-time
metrics processing engine. We share our experience and
methodological insights (§ 4), and show the sketch ability
to determine the critical metrics for each microservice and
detect anomalies, while adjusting to workload changes in
an online fashion (§ 6.2);

* we present a prototype implementation of pView (§ 5) with
several use cases (§ 4.3) and evaluate its performance on di-
verse benchmark applications, such as DeathStarBench [32]
and OnlineBoutique [13], under a heterogeneous set of in-
jected system and application failures (§ 6.2).

2 Motivation

Our work is motivated by the scalability limitations of tradi-
tional monitoring systems [ 14, 16,42] for cloud-native appli-
cations. We quantify the overheads of observability, breaking



down the metrics data generation and ingestion costs. We
define a metric as a stream of data points that expose appli-
cation state and resource usage over time, with variations
often signaling anomalous behaviors. We then highlight a
set of observability tasks which, despite their simplicity and
proven usefulness, are hindered by the data sampling strate-
gies adopted. Based on our cost analysis, we posit the oppor-
tunity for in-situ metrics analysis.

Observability at scale has high costs and impacts SLOs.
Observability in cloud-native applications is challenged by the
thousands of generated metrics; e.g., Uber aggregates 500M
metrics/s and stores 20M/s globally [11], which translates to
over $21M/month [18] when stored on AWS with 150-day
retention costs.

High-volume metric export can also degrade performance,
e.g., Alibaba Cloud showed up to 2 x tail latency increase due
to monitoring cycles [105]. Additionally, since even small
improvements in CPU efficiency can save millions of dol-
lars [101], production clouds typically have low CPU head-
room to accommodate monitoring collection cycles, as data
center operators try to maintain a high water level for user
workloads to save costs [20,27,115].

Despite this, Ops teams often over-collect metrics un-
der the common-sense assumption that more data increases
future utility. This leads to noisy datasets that impede in-
sight [62, 109]. These trends highlight the need for cost-
effective observability approaches and to narrow the focus of
metrics collection to informative and insightful data.
Existing remedies sacrifice data quality and hinder down-
stream analysis tools. A microservice’s metrics are gener-
ated and updated independently by each layer of the microser-
vice’s stack: application, service mesh proxies, and system
(i.e., OS kernel). Table | reports a few representative exam-
ples for each category. The metrics at each layer are updated
using distinct methods. System-level metrics are updated pe-
riodically at a tunable frequency, e.g., for Linux containers,
cAdvisor [42] reads from Linux procfs. On the contrary,
most application-level and service mesh metrics are only up-
dated when RPC requests are processed. For example, Re-
dis [86] updates counters, such as the number of keys it stores,
the number of requests for each command (e.g., HGET, HSET),
etc. These differences imply that for many metrics, the update
timescale is fine-grained and follows the request arrival rate.
Whereas, for other metrics, tuning generation granularity is
easy and can be done arbitrarily.

To effectively assist downstream analysis tools [38, 39,
46, 111] in localizing failures and SLO violations, the ob-
servability data should ideally enable visibility of system
events at the finest granularity across all layers. However,
traditional monitoring systems are limited in satisfying this
goal. While new metrics monitors like Rezolus [96] pur-
sue high-resolution generation, metrics collection systems
such as Prometheus [16] are configured with coarse-grained
polling intervals (e.g., no smaller than 30s), which are far
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Figure 2: Resource consumption of the cAdvisor exporter for
different granularities of metrics generation and ingestion. cAd-
visor reads Linux procfs every gen seconds to expose the metrics
of the monitored containers. The metrics are periodically in-
gested (ing) by a remote Prometheus collector.

System CPU Latency RPS Analysis
Pull over HTTP [16,79]  high x high x high x offline
ZERO [105] zero v net RTT x same v~ offline
uView offloaded v PCle v/ same v~ online

Table 2: Comparison among existing metrics collectors. CPU:
cycles for metrics ingestion on worker node, RPS: impact on
requests/s on a cloud application; uView supports timely in-situ
analysis of metrics.

from the RPC timescale at which events happen, and not
adequate for capturing subsecond-scale variations or spikes.
As aresult, engineers are often given an insufficient picture
of system events to precisely correlate spatially and tem-
porally every-day hurdles such as gray and cascaded fail-
ures [50, 74, 85, 116], hotspots propagation [38, 39, 84] and
metastable behaviors [21,28,49], that are ordinary in microser-
vice applications.

Dissecting the observability overheads. Observability com-
pute overheads can come from data generation or ingestion.
Anecdotal evidence suggests that regardless of the generation
method, ingesting (i.e., collecting or uploading) the metrics
into an observability datastore incurs significant performance
overheads and costs. Our experiments, in Fig. 2, show that the
ingestion interval is a bigger contributor to the CPU overhead
than the generation interval. Thus, while it is feasible to gener-
ate metrics at a fine granularity, Ops teams use coarse-grained
sampling because of ingestion overheads and costs. More
details about these experiments are discussed in Appendix B.
Takeaway: an opportunity for in-situ monitoring. This im-
plies that observability frameworks can leverage fine-grained
metrics, with marginal costs, for generating richer insights
if they can avoid the ingestion overheads — for example, by
performing processing locally on the node. Compared to state-
of-the-art (Table 2), uView’s key advantage is that it performs
filtering and anomaly detection directly on the IPU, enabling
high-resolution in-situ metric analysis, without overwhelm-
ing backend systems or network resources. Compared with
traditional data stores, e.g., Prometheus, this fundamentally
reduces network overheads. Relative to recent advances in
OTel [24,97], uView’s use of IPU allows for complex filtering
with zero to minimal impact on the microservice. Finally, our



approach eliminates the need for a specialized flow control
mechanism, e.g., ZERO [105], which streams all raw metrics
over the network at high frequency.

2.1 Use-cases in the observability landscape

We now present use cases enabled by in-situ processing.
UCH#1. Accurate spike detection. Engineers spend signifi-
cant effort to triage and resolve tail latency. However, such
a diagnosis usually requires correlating information across
different sources, both spatially and temporally [19,39,74] —
e.g., “is the CPU hotspot propagating from a sidecar proxy to
the service, or from the service to the sidecar proxy?” Unfortu-
nately, the coarse-grained interval at which system and appli-
cation metrics are observed makes posterior time-correlation
methods inaccurate and error-prone. Coarse-grained intervals
lack a sufficient resolution to provide a precise view of met-
rics evolution, and are unable to distinguish between a smooth
increase or a sharp jump, which usually offers a crucial means
to pinpoint interesting events in time. A notable example is
metastable failures [28,49], where a sharp and localized vari-
ation of system state acts as a trigger [21] for a prolonged
anomalous service state.

Observability frameworks require techniques to detect or
cross-analyze the data for these kinds of issues.

UC#2. Coordinated cross-container tracing. Even when
metrics do indicate an uncommon application state, Ops teams
would benefit from coordinating traces [10, 17,93] sampled
across the different microservices processing the request.
However, head-based sampling methods (common in pro-
duction systems [93, 114]) sample user requests uniformly
at random, thus relying on luck to capture traces associated
with uncommon states — especially if the anomalous condi-
tions last for a short interval. In contrast, biased-sampling of
traces using local knowledge of runtime state (i.e., metrics)
was shown to help capture informative traces [46, 114].

To realize bias-sampling, observability frameworks need de-
signs that allow them to efficiently observe metrics locally,
at a time scale close to the request rate, so that they can an-
ticipate the realization of representative traces and timely
mechanisms to trigger their collection.

UC#3. Dynamic metrics sampling. Current monitoring sys-
tems use fixed sampling intervals, leading to inefficiencies.
Metrics vary in behavior (e.g., CPU usage fluctuates more
than CPU limits), suggesting that slowly changing metrics
should be sampled on update. Moreover, all metrics benefit
from higher sampling rates during anomalies. Cloud provider
monitoring tools (e.g., AWS-managed Prometheus) charge
tenants for observability data ingestion and storage, creat-
ing strong incentives to optimize data collection. Although
Prometheus allows per-metric scraping intervals, these set-
tings are static, require manual tuning, and cannot adapt to
dynamic workload changes.
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Figure 3: The architecture of 1/ View.

Observability frameworks require quick techniques to accu-
rately determine the appropriate sampling granularity.

3 System design

The architecture of uView (Fig. 3) logically consists of two
components, i.e., data plane and control plane, which we dis-
cuss below.
Data plane agents. The data plane — offloaded to IPU — runs
parallel data plane agents which are responsible for reading
metrics from the host node and performing real-time analysis
of the metrics data. Additionally, data plane agents can be
instrumented with exporters libraries to interface with and
push data to external collectors or observability systems (e.g.,
Prometheus, OpenTelemetry, etc.).2

Each agent contains for each service an array of u-
MONITORS and a control loop for metrics processing. The
U-MONITORS are the core execution units of uView and they
process and analyze their microservice’s metrics data.” An
agent’s control loop consists of periodically fetching a u-
MONITORS’s metrics from host memory at a fine time interval
(i.e., local scraping interval) and feeding them into the u-
MONITORS — we provide pseudo-code in Fig. 14. The local
scraping interval is typically set to be smaller than the remote
scraping interval to enable fine-grained analysis (discussed in
§2).

A u-MONITOR receives as input a vector of Ops-specified
metrics for the microservice it manages and produces an

2uView supports both event-driven and pull-based observability.
3We use the terminology service and microservice interchangeably.



output signal indicating whether the metrics vector contains
anomalies. Our design explicitly associates a y-MONITOR
with a single service, regardless of the source of a service’s
metrics (i.e., apps, service mesh, or system, Table 1), because
it allows for seamless co-migration of services and their cor-
responding y-MONITORs without creating deployment depen-
dencies among u-MONITORS. Additionally, this design choice
allows for a sketch-based classifier, which we discuss later
(§4.1).

A p-MONITOR consists of a set of optional pre-processing

transformations and a (streaming) classifier, which performs
anomaly detection based on these features. Our design of
uView’s u-MONITORs includes a default lightweight sketch-
based classifier (§ 4.1) for anomaly detection; however, our
design is plug-in-based and enables Ops teams to select alter-
native classification algorithms. We dive more deeply into our
choices for the u-MONITOR design and specific optimizations
for off-path IPUs in § 4.
Control plane. The control plane orchestrates the interac-
tion between the sources that generate metrics and the data
plane. At a glance, a control plane component executes on
each compute node; this component (1) manages the life-
cycle of the y-MONITORs, (2) handles how the data plane
can access memory locations where metrics reside, and (3)
based on u-MONITOR outputs, produces actionable insights
for observability.

For generality, uView does not dictate how insights are
used directly. Our approach is general in that various observ-
ability hooks can be configured and uView merely invokes
the hooks when appropriate. This allows integration of uView
with existing observability tools, such as distributed tracers,
loggers, and metrics collectors. We listed several use case
scenarios in § 2.1; § 4.3 illustrates a dynamic sampler hook
that pushes metrics to a remote Prometheus collector.

To adopt uView, microservices need to interface with the
control plane via an API. We detail the uView API in § 5.
When the per-service metrics are specified ahead of time (i.e.,
they are stated in the service initialization configuration), we
can generate automatic instrumentation to invoke the API
for well-known metrics.* In other cases, the microservice
application needs to be modified to insert an API invocation
for each metric that it intends to export to uView.

4 Metrics streaming analysis: y-MONITORS

Due to its proximity to the monitored services, uView’s data
plane supports fine-grained local scraping intervals,which
allows it to detect short-term variations of monitored metrics
without incurring CPU overheads. In brief, a y-MONITOR
must quickly perform anomaly detection in real-time while
being sufficiently flexible and efficient to support an arbi-

4The instrumentation would override access for well-known metrics at
service initialization time via a LD_PRELOAD mechanism.

trary set of operator-defined metrics streaming at an arbitrar-
ily configured frequency. To flexibly and efficiently support
real-time processing, the y-MONITOR requires a metrics pro-
cessing pipeline to sanitize the data (§ 4.2) and a general
classification technique to detect/extract anomalies/insights
from arbitrary metrics (§ 4.1). We describe the challenges
underlying the design of a ;-MONITOR and the components
to address them.

4.1 Sketch-based Anomaly Detection (AD)

The high volume of continuous metrics collection imposes sig-
nificant scaling challenges for our design of y-MONITORS, our
metrics classifier module, regarding processing time, memory,
and storage availability.

To meet the requirements of lightweight execution, adapt-
ability, and timely detection of the anomalies defined in § 2,
we employ a streaming, subspace-based anomaly detection
approach based on the Frequent Directions (FD) sketch algo-
rithm [65]. We first motivate subspace-based anomaly detec-
tion in relation to microservices metrics, then elaborate on
the use of FD-sketch, an instance of dimensionality reduction
that operates in a streaming setting.

4.1.1 Maetrics AD via dimensionality reduction

In the y4-MONITORS, our goal is to analyze metrics to detect
anomalous behavior—anomalies on metrics are frequently
used as a sign of problematic application behavior. uView
targets multivariate anomalies that break the normal correla-
tions between metrics. It does not target anomalies related to
seasonality, long-term trends, or recurring patterns. Subspace
analysis (SA) techniques [47,48,58,71,91] are a class of
unsupervised anomaly detection techniques based on dimen-
sionality reduction (e.g., via PCA/SVD). Recently, they have
been proven competitive with state-of-the-art ML-based meth-
ods for multivariate AD time-series on a number of bench-
marks [89], yet they are simpler to train.

The use of dimensionality reduction is fueled by the obser-
vation that microservice metrics often exhibit strong corre-
lations [52], meaning they lie in a lower-dimensional mani-
fold despite being measured in high-dimensional space. At
their core, SA algorithms learn a low-dimensional subspace
from anomaly-free data, i.e., by computing a low-rank matrix
approximation of a training dataset that contains only non-
anomalous data points. Anomalies (e.g., memory leaks, CPU
spikes) disrupt these normal correlations, causing deviation
from the subspace learned during normal operations. SA tech-
niques can effectively detect anomalies by seeing how well a
test point can be reconstructed from the learned subspace.

More formally, assume a low-rank matrix Uy can well rep-
resent any data point in a training dataset M containing only
non-anomalous samples. Here k represents the rank of the
matrix U. The matrix Uy captures the principal information



of the dataset M in a compact form, and it can be used to
detect anomalies in new data points as follows. For any new
data point X' ¢ M, one can project x' onto Uy, obtaining an
embedding U, kT x' — i.e., a vector in the subspace. Then, one
can reconstruct x’ starting from its embedding U/ x’ by ap-
plying the inverse transformation UU]x’, and evaluate the
reconstruction error ||x' — UyU/[x'|| (the input data point x’
is known). Under the assumption that U was learned exclu-
sively from non-anomalous data points, the reconstruction
error provides a measure of the deviation of the data point x’
from normality. If x’ is not anomalous, its reconstruction error
is expected to fall within the distribution of errors observed on
the training data. Conversely, anomalous points yield higher
errors, as they do not align well with the learned subspace.
Thus, a point x’ is flagged as anomalous when its reconstruc-
tion error exceeds a threshold (y) that can be derived from the
training error distribution.

In pView, the matrix M corresponds to a dataset derived

from a microservice’s metrics, which is collected offline and
used to train the initial low-rank matrix Uy (see Appendix C.2
for the detailed workflow).
Remark 1: Scale heterogeneity. Microservice metrics span
vastly different scales. Without proper handling, high-
magnitude metrics may dominate the reconstruction error,
masking anomalies in smaller-scale metrics when computing
the L2-norm ||x — U, U,/ x||. We normalize each metric to zero
mean and unit variance across time in the preprocessing mod-
ule (§ 4.2). This normalization ensures all metrics contribute
equally to the reconstruction error, regardless of their absolute
scales.

4.1.2 Sketching for streaming operations

After ¢ local scraping intervals, a y-MONITOR will have ob-
served a sequence of data points [x,x2,..,x;] € R"™*. How-
ever, this dataset may have drifted from the training dataset
M, i.e., the information contained in Uy, is not sufficient to
represent M; = M | [x1,Xx2,..,X;].

Thus, a key challenge with designing a sketch-based detector
is to adapt to concept drift in an efficient and lightweight
manner. We use FD-sketch to address this challenge.
Lightweight adaptation with FD-sketch. A strawman is to
recompute Uy from scratch by computing a truncated SVD’
(Singular Value Decomposition) on each incremental ver-
sion of the initial training dataset with the new data points
appended. This is very demanding in terms of storage and
computation, as it would require storing and elaborating a
matrix M; that grows with ¢. The challenge is how to effi-
ciently update the low-rank matrix in a streaming setup, i.e.,
at discrete time ¢ obtain a matrix Uy using only information
from time ¢ — 1.

Srefers to the SVD decomposition of a matrix M where only the
top-k largest singular values are retained (and associated vectors) — i.e.,
SVDy(M) = U V[T

Borrowing from matrix sketching [40, 65], we adopt the
Frequent Direction sketch algorithm (FD-sketch) to solve this
challenge. The algorithm approximates the large matrix M; €
R™*! with a significantly smaller “sketch” matrix S, € R"*(,
with £ < t, such that S7x ~ M/ x. This means that to obtain
the reconstruction basis Uy € R™*™ we can compute the rank-
k SVD on S; — and not on the matrix M;. Moreover, since
FD-sketch operates in a streaming setup, it can update the
sketch S; incrementally, using only S;_; and the new sample
X; at any time ¢, if not regarded as anomalous. This means we
do not need to store or elaborate a large matrix M;. Table 4
summarizes the salient notation used in this section.

Although variants of FD exist—e.g., Randomized FD [41]-
they often optimize for settings that do not match observability
workloads—e.g., Randomized FD is optimized for sparse ma-
trices; however, cloud-native metrics are typically not sparse.
Hence, we focus on the original FD-sketch algorithm [65].
Putting everything together: anomaly score. A u-
MONITOR keeps in memory a low-rank matrix Uy, € R™*"™"
and a sketch matrix §;. For each new input data point x; at
time ¢, the g-MONITOR uses Uy to compute a reconstruction
error vector o, € R™ as:

('X.t :x[—UkU];rx[ (1)

where each component @, ; quantifies how “anomalous” the
metric x; ; is, and Uy, is the up-to-date low-rank approximation
matrix computed using FD-sketch. The vector o is used to
derive an anomaly score, as in [47]. We say that there exists
an anomaly at time ¢ if ||o,|| > 7. Finally, when the input data
point is not anomalous, the u-MONITOR updates the low-rank
matrix as:

U, + SVD; (St—l)

2
S; = FD-sketch (S;—1,x;) @

if o, <y

Remark 2: Workload shift. Legitimate workload variations
(e.g., traffic changes, configuration updates) can cause sud-
den metric shifts that will be misclassified as anomalies. In
this case, the sketch S; should be updated to reflect the new
baseline. We introduce a learning rate 1 for probabilistic
sketch updates. When |0 || >y — i.e., point is anomalous —
the sketch is updated with probability 1. The rationale is that
if the anomaly is persistent, it will eventually be incorporated
into the sketch. In this way, sustained deviations—after being
initially detected and flagged—are treated as part of the up-
dated normal behavior, preventing repeated false alarms for
patterns that no longer represent meaningful anomalies.
Remark 3: How do we mitigate metrics dilution. Fundamen-
tally, our sketch aims to minimize the Frobenius norm error
and preserve the overall variance of the data, thus large devia-
tions or outliers can heavily influence the learned subspace,
potentially leading to false negatives if not handled carefully —
a phenomenon often called metric dilution. We mitigate this
effect with three design choices. First, we handle scale het-
erogeneity (Remark 1). Second, we employ one sketch per




microservice — rather than larger sketches. Third, we tune
the hyperparameters of the different sketches independently
(rank k, threshold 7y and learning rate 1), rather than adopting
a one-size-fits-all static configuration. This is beneficial in
practice (§ 6.3).

Takeaways: FD-sketch meets ;/View requirements. In sum-
mary, FD-sketch meets uView’s requirements. The approxi-
mate sketch matrix S; is continuously updated with new non-
anomalous data points. Therefore, uView remains aligned
with recent metrics trends (§ 6.4), which is important in dy-
namic microservice applications. Second, by maintaining a
relatively small matrix S;_, FD-sketch avoids storage costs
and computationally expensive SVD decompositions, remain-
ing lightweight and fast. This makes FD-sketch well-suited
for resource-constrained IPU environments, enabling high-
frequency analysis for uView, as we quantify in § 6.1. Lastly,
FD-sketch does not sacrifice explainability. Because the vec-
tor o, naturally shows how much each metric contributes to
the overall anomaly score, Ops teams can identify the most
critical metrics — for instance, by examining the top-j met-
rics with the highest reconstruction errors. This can help
distinguish different classes of failures, such as issues in the
network stack or disk I/O. At the same time, Ops teams do
not need to configure per-metric thresholds, since detection
relies on a single global threshold Y.

4.2 Metrics pre-processing

As part of the processing pipeline, and before entering the
sketch, raw metric values undergo pre-processing transforma-
tions. Transformations are simple and account for these as-
pects: (1) metrics that are cumulative need to be buffered and
accumulated at each sample (e.g., resource usage metrics like
container_cpu_usage or container_network_transmit_bytes,
which report ever-increasing counters), (2) metrics may need
to be aggregated across replicas of the same service,” and
(3) metrics need to be mean-centered and rescaled to unit
standard deviation (cf. Remark 1). For rescaling, the mean
and standard deviation are initialized from the training dataset
M and periodically recomputed at runtime by maintaining
running aggregates Y ; x; and Z,-xiz.

4.3 Observability hooks

Distributed tracing hook. Next, we describe how uView
uses continuous local metrics analysis to anticipate problem-
atic executions (as motivated in § 2) and enable distributed
tracing to sample informative requests.

At every local scraping interval, uView outputs a binary
decision on whether the tracer should sample user requests.
Later, it informs the external distributed tracing library that
was previously registered with the distributed tracing hook

6uView supports standard aggregation functions including max, min, sum
and mean; it can be extended with custom aggregators.

Control APIs Declaration

Initialize void configMicroMonitor(ServicelD, pretrainedClassifier, scrapingInterval)
U-MONITOR void registerMetrics(List<MetriclD>)

Configure MetriclD createMetric(ServicelD, Metric, Type, AggType)

Metrics MetricObj getMetric(ServicelD, MetricID)

Add Hooks HookID registerHook(List<ServicelD>, HookFn)

Runtime API Declaration

Increment (counters) | void inc(MetricObj, value)

Decrement (gauges) | void dec(MetricObj, value)

Hook Interface \ Declaration ‘
| HookFn | void _(MetricID, MetricValue, AnomalyScore) |

(a) uView APIs and hook interface.

from microviewapi import MicroViewClient

from microviewapi import COUNTER

# 1. Connect with Microview

client = MicroViewClient (name="python-service")
# 2. Register metrics with control plane
metric = client.create_metric(name, COUNTER)

# 3. Update: increment counter

metric.inc()

(b) Instrumenting a Python service with the uView client library.

Figure 4: uView API and instrumentation examples.

(§ 5) about its decision. Logically, the uView sampling policy
is based on (1) aggregating the output of all y-MONITORS of
services involved in a user request, and (2) deciding to sample
the request if at least one of them has classified its metrics as
anomalous. At this point, this sampling decision is held until
the subsequent classification cycle, when a new decision will
be taken based on a new metrics reading.

Ultimately, uView serves as the trigger; we envision that

different realizations for exporting traces are possible (e.g.,
retroactive sampling [114]).
Metrics sampler hook. The dynamic metric sampling mech-
anism allows uView to report informative metrics variation
events promptly, and save the data volume generated for their
collection. Our adaptive sampling mechanism builds on the
core idea of using the anomaly score value as a measure
of the informativeness of the collected metrics. For every
local scraping interval, the sampler hook receives the per-
service anomaly score ||at||> from the u-MONITORSs. Then
the dynamic sampler hook takes a per-service decision about
whether the current metrics should be sent to a remote monitor
system. The dynamic sampler hook decides to send metrics
when the anomaly score is above a threshold. In this case, it
notifies external libraries via the registered callback.

5 System implementation

uView APIL. To facilitate y-MONITOR metrics collection and
management, uView exposes a management API (Fig. 4a).
This interface allows pView users to register metrics metadata
and specify initial configurations — e.g., y-MONITORS’s lo-
cal scraping interval and pre-trained classifier. This interface
can also be used to register observability hooks. To enable
a general set of hooks that can take arbitrary actions based



on the insights generated by a y-MONITOR, uView presents
a simple interface (Fig. 4a) that all hooks must implement.
In brief, all hooks are event-driven and must implement an
interface that implicitly registers them as callbacks when
insights are generated by a y-MONITOR. Finally, the API
provides a Prometheus-like client library to instrument mi-
croservices code. The set of per-service metrics is configured
by Ops teams; we consider this as an initialization param-
eter for uView. The microservices must use this library to
create metrics during their initialization (Control API), and
manipulate metrics at runtime (Runtime API). uView supports
standard Prometheus metric types [16] (counters, gauges and
histograms). Fig. 4b shows an example of how to instrument
a Python service with the uView client library.

uView data plane. We choose off-path IPUs [106] with
System-on-Chip (SoC) cores separate from NIC cores. We
select this type of IPUs for two main reasons. First, they typ-
ically feature more than a dozen SoC cores, aligning well
with the task of metrics analysis, which naturally lends it-
self to embarrassingly parallel computation. For example,
NVIDIA BlueField-3 [12] and Intel IPU E2000 [95] both
boast 16 ARM cores. Second, unlike on-path solutions, they
host a full-fledged OS and can run high-level code runtimes
and libraries [73], simplifying development and increasing
flexibility to process metrics samples.

The uView control plane spawns one agent on each of the
IPU’s available cores, binds the agent to a core and main-
tains a control channel (TCP connection) with it. At runtime,
the control plane instantiates a new u-MONITOR for each ser-
vice and assigns the y-MONITOR to one of the agents via
the corresponding control channel. Thus, each agent runs the
U-MONITOR assigned to that core.

Host-to-NIC metrics data movement. uView leverages
RDMA for host-IPU communication over the PCI bus, achiev-
ing host CPU bypass. The agents issue RDMA READs to fetch
metrics from host memory. In this way, uView supports high-
frequency metric reading without incurring the overhead of
system calls and memory copies. We choose RDMA over pro-
prietary DMA technologies (e.g., NVIDIA DOCA SDK [81]),
because (i) it has been recently demonstrated to provide higher
throughput than DMA for host-to-IPU [106] (SoC) data trans-
fers [106] and (ii) of its generality and ease of portability
across IPUs of different vendors. The agents receive the con-
figuration of metrics to be fetched for each y-MONITOR from
the control plane, which includes the RDMA rkey and the
RDMA remote address for each monitored metric. Each agent
manages its own set of Queue Pairs (QPs) — we do not share
QPs with other agents to avoid synchronization overheads.

Host memory management. The yView’s memory manage-
ment module manages a contiguous pool of shared memory,
where microservice metrics are stored. This design introduces
the challenge of enforcing access control boundaries across
potentially untrusted tenants. Similar to SPRIGHT [83], the
trust model in uView assumes that the microservices within

the same application trust each other, but the microservices
in different applications may not. Therefore, to limit unau-
thorized memory accesses, uView assigns a private shared
memory segment to each microservice application. By al-
locating distinct shared memory segments, uView provides
isolated security domains to different applications.’

To optimize memory access, the control plane groups met-
rics by service and allocates them contiguously in memory.
Further, it groups microservices assigned to the same data-
plane agent into the same RDMA MR to reduce the number of
RDMA READ:s. For efficiency, metrics slots are implemented
as a structured byte-aligned format, and the RDMA MRs are
aligned with the 4KB page size in use.

6 Evaluation

System setup. Our testbed comprises 4 nodes, each equipped
with 8 Intel Xeon E3-1230v6 CPUs at 3.50 GHz, 32 GB of
RAM, and 100 Gbps network interfaces. We implemented the
1 View control plane and data plane components, and deployed
the system on a NVIDIA BlueField-2 IPU with 40 Gbps
network link capacity.

6.1 Performance analysis microbenchmarks

Setup. We measure the throughput of the y-MONITOR analy-
sis pipelines under a variety of microbenchmarks while vary-
ing the number of monitored microservices and metrics. We
compare overheads of FD-sketch [65] and compare with two
baselines: (1) Variational Autoencoder (VAE) [57]: repre-
sentative of a neural network-based dimensionality reduction
method. We adopt a 2-layer architecture for both the encoder
and the decoder, with latent dimension of 10 and ReLLU ac-
tivation. (2) Threshold: each metric is compared against an
operator-defined threshold and an alert is raised if the thresh-
old is exceeded. Our experiments last 10 minutes; we sample
throughput every 10 seconds and average the results over
the entire duration. We discard the first minute to avoid sam-
pling throughput during transitory, e.g., unfair share of RDMA
bandwidth across the dataplane agents and cache warm-up
effects. To observe the impact of pod changes, we fix the
number of metrics to 64 while varying the number of pods
from 8 to 256. To observe the impact of the number of metrics,
we vary the metrics from 16 to 256 while fixing the number
of pods to 8 (matching IPU cores).

Results. First, we measure the y-MONITORS’ processing
throughput on the IPU for different anomaly detectors. Our
results in Fig. 5 shows that FD-sketch enables higher through-
put compared to the threshold-based classifier while being
far more dynamic and adaptable. On the other hand, VAE’s
throughput is less than half of the throughput of FD-sketch
due to neural network inference overhead.

7A complete security analysis of yView is beyond the scope of this paper.
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Figure 5: Performance of u-MONITORs on Bluefield-2 [12] IPU (a) and y-MONITORs + Prometheus exporters (b).

Second, we measure throughput when we also enable
the Prometheus exporters in the y-MONITORs. The exporter
works as a proxy for RDMA-fetched metrics, exposing them
to HTTP endpoint on the IPU for Prometheus to scrape. We
use wrk tool to scrape the /metrics endpoint from a different
node. We tested the worst-case scenario without parallelism,
i.e., a single uView data plane agent. ® Fig. 5b indicates that
with a single agent, the IPU can support up to 256 pods with
64 metrics each at a throughput of 1.3 scrapes/s. This means
we can decrease the scraping interval to 1s and still collect
metrics from up to 256 pods, while not consuming CPU cycles
on the worker node despite the high collection frequency.

6.2 -MONITORS local analysis

Benchmark applications. We used the following microser-
vice benchmark suites: DeathStarBench (DSB) Hotel Reser-
vation [32], an open-source popular benchmark application
(15 services); we deployed a Docker-based version using the
Blueprint compiler [21]. OnlineBoutique [13], a real-world
application developed by Google, with 11 services that realize
an online shop. We deployed OnlineBoutique on a 3-node
Kubernetes cluster.

Fault injection. Our fault injector comprises the follow-
ing performance and application-level anomalies from prior
works [38, 84]: (1) Memory capacity. One or more threads
continuously allocate/deallocate memory for a configurable
duration and intensity. This kind of performance anomaly em-
ulates memory leaks due to code bugs or inefficiencies, such
as excessive heap memory usage or JVM garbage collector
overhead, which are common scenarios in large applications.
(2) LLC pressure. The injector introduces pressure on LLC
bandwidth and/or capacity, by frequently accessing a small
portion of the LLC or by performing random accesses of
configurable intensity to cover the size of the LLC. (3) I/O
pressure. We simulate I/O pressure by introducing random
read/write operations on the disk, which can be caused by
a high request rate to the database or by a high number of
file operations. (4) CPU usage. We inject a CPU-intensive
workload of configurable intensity (i.e., number of cores),
which can be caused by a high request rate to the service,

8The agent receives scrape requests, issues RDMA reads on its QP, and
feeds the responses to the u-MONITORs analysis pipelines. Thus, at each
Prometheus scrape, all metrics are collected and processed from all the pods
on the node using a single thread.

Anomaly type Injection tools

Memory pressure ChaosMesh [2], stress-ng [31], pmbw [99]

LLC pressure FIRM’s 11c.c [84]

1/0O pressure ChaosMesh [2], stress-ng [31]
CPU usage ChaosMesh [2], stress-ng [31]
L7 failure redis-cli [86], ChaosMesh [2]

Table 3: Anomaly injection setup.

code bugs, or a high number of computations to serve a par-
ticular request. (5) L7 failure. Inspired by real-world failure
stories [5], we trigger cache evictions in a Redis key-value
store. Dynamic variations in Redis cache status can result in
different downstream request execution paths.

Our fault injector combines  industry-standard
ChaosMesh [2] with common performance stressing
tools (cf. Table 3), and uses a modified version of FIRM to
schedule faults on a service. We develop a custom Blueprint
plugin to support this tooling. To evaluate the detection of
short-term failures in complex scenarios [45], we inject
anomalies lasting no more than 30 seconds. The injector
triggers anomalies uniformly at random into services, with
adjustable intervals, duration, and intensity, and we allow
simultaneous injection in multiple services.

6.3 Distributed tracing experiments

We evaluate the performance of the uView distributed tracing
sampling policy (§ 4.3).

Observability data. We create training and test datasets by
collecting metrics and traces. For each microservice, we col-
lect 35 system-level metrics from the OS, using cAdvisor [42]
(c.f. § 2). We also collect application metrics where applicable
(e.g., 38 metrics for Redis key-value store). We generate the
training datasets in a controlled environment (Appendix C.2),
where we allocate conservative vCPUs and memory limits of
each microservice, i.e., such that tail resource utilization is no
larger than 10%. We use Prometheus [16] to collect and store
metrics, with a local scraping interval of 1 second, unless
otherwise specified.” For traces, we use Jaeger [10]. We ran
our experiments for 1 hour, using the first 25 minutes worth
of data for the training and validation datasets (corresponding

9We also set the housekeeping_interval in cAdvisor consistently.



to 1500 sampled vectors) and the remaining 35 minutes for

the test dataset.

We annotate traces in our test datasets that violate SLOs.
We group traces by API and use the 36-rule to establish
latency SLO violations for each API, as different API calls
may correspond to different SLOs. We also annotate traces
that present errors (e.g., HT'TP 5xx status codes). We refer
to traces violating SLOs or containing errors as symptomatic
traces.

Comparisons. We measure coverage—the percentage of

collected symptomatic traces—and overhead—measured as

a percentage of false positives, i.e., the percentage of non-

symptomatic traces unnecessarily collected via the tracing

hook policy. We compare FD-sketch against the following
anomaly detection methods:

* PCA: a classical dimensionality-reduction approach with
the same memory footprint as FD-sketch O(km); however,
it requires full data access and offline retraining, with no
support for streaming updates;

e k-Nearest Neighbor (k-NN): a distance-based method that
marks a data point as anomalous if it is far from its nearest
neighbor in the training dataset (which contains only normal
samples).

* VAE (Variational Autoencoder) [57]: a deep learning
encoder-decoder structure that reconstructs input vectors
from a learned latent representation;

The methods include both classical and deep learning ap-
proaches for dimensionality reduction. Our selection of PCA
and 1-NN is motivated by a recent study [89] demonstrat-
ing their performance are competitive with more complex
deep learning methods on several multivariate time-series AD
benchmarks. All methods are trained on the same dataset of
microservice metrics.

To better contextualize uView’s performance, we also com-
pare with an “oracle” — a detector having exact knowledge
about the anomaly injection pattern (i.e., ground-truth) — and
with head-based sampling [15,25], introduced in § 2.1.
uView anticipates symptomatic traces. Fig. 6 shows the
coverage-overhead trade-off of yView’s distributed tracing
hook, for our two workloads. With around 20% sampled
traces, FD-sketch captures ~=80% of anomalous traces, achiev-
ing a favorable trade-off between coverage and overhead. Ran-
dom head-based sampling would require collecting nearly
80% of all traces to achieve comparable coverage. PCA offers
the best trade-off between coverage and false positives, but
requires offline retraining and full data access. Compared to
FD-sketch, PCA can be regarded as an offfine counterpart,
offering a competitive reference on the performance achiev-
able by FD-sketch without streaming constraints. In contrast,
for the same training data volume, both VAE and 1-NN miss
many anomalies and trigger trace sampling less frequently
than the oracle.

Impact of sketch optimizations (§ 4.1). In Fig. 7, we

run a sensitivity analysis and show performance with per-u-
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Figure 6: uView’s performance for the distributed tracing use-
case. Coverage is the percentage of symptomatic traces collected,
and sampled denotes the overall percentage of collected traces.
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Figure 7: Classification performance for the distributed tracing
UC, with our per-microservice sketch optimization (red dots)
and without (other dots).

MONITORSs hyperparameter optimization (red dots) and with-
out (other points). For the points without per-u-MONITORS
tuning, the sketch configuration is static and equal for all
services. Namely, we start by setting k = m/5 as per sketch
guidelines [47]. Then, we perturb this value. Similarly, for
[ (Table 4). Finally, for each configuration obtained, we in-
troduce our learning rates 1 and test values ranging over a
log-space.

First, we observe that uView finds a sweet spot (red dots)
between coverage and overheads, thanks to independent hy-
perparameter tuning on each y-MONITORS. It lies on the em-
pirical Pareto front of the performance profile, dominating
other static configurations (other dots). Second, we can ob-
serve the impact of the learning rate 1| for the OnlineBoutique
workload. Without learning rate (n = 0) there is a tendency
to raise many false alarms (dark blue points), resulting in
high overhead. This is because if one of the metrics deviates
abruptly and uView keeps raising anomalies, the sketch is not
updated (n = 0). On the other hand, for n = 0.1, the sketch is
updated too frequently, with chances of incorporating faulty
samples during the update step and thus contaminating the
sketch low-dimensional matrix representation (which should
represent non-faulty states only). This translates in low cov-
erage. The behavior depends on how different metrics and
services react to the anomalies that are injected, and there’s no
one-size-fits-all choice for 1. This is evident by the different
performance profiles across workloads. For OnlineBoutique,
the performance profile has the largest variance along the
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Figure 8: Performance of the adaptive metrics sampler hook for
different anomaly score thresholds.

overhead dimension (Fig. 7a), for DSB hotel, the performance
profile has larger variance along the coverage axis (Fig. 7b).
Therefore, uView treats M as a tunable hyperparameter and
we found that per-u-MONITORS tuning of 1 achieves good
performance in practice.

6.4 Adaptive sampling experiments

Lastly, we demonstrate how uView can reduce the data vol-
ume generated by metric collection while preserving accuracy
and thus reducing ingestion and storage costs. For this experi-
ment, we consider a single instance of a Redis microservice,
to include both systems and application metrics. We train
the sketch for 30 minutes, and run the dynamic sampler on
a test dataset M collected over 10 minutes. Borrowing nota-
tion from § 4.1, let’s denote as M; the time-series of metric
i=1,..,m. Then, we apply the sketch dynamic sampler, as
described in § 4.3, and obtain a filtered time-series M; with
reduced data volume, for every metric time-series M;. We
evaluate the trade-off between accuracy and data volume re-
duction. As a measure of accuracy, we use the Normalized
Cross-Correlation (NCC), defined as:

- CON‘(M,’,M,‘)

NCC;(t1=0) =
(T ) corr(M;,M;)

The cross-correlation at a time lag T = 0 measures the simi-
larity between the two time series. We normalize NCC;(0) by
the autocorrelation at lag 0 of the original time-series. Since
the dynamic sampler hook filters out some samples, M; and
M; will have different lengths. To compute NCC;(0), we fill
missing samples of M; by propagating the value of the last
collected sample until the next useful sample. This emulates
the behavior of a centralized collector that, at any time be-
fore the next available collection, would only know the last
sample.

Figure 8 reports the results for different anomaly score
thresholds. For adaptive sampling, the anomaly score thresh-
old controls the aggressiveness of the sampler. When the
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(b) Identification of the top-3 relevant metrics.
Figure 9: Evaluation under non-stationary load. The sketch
can discriminate between short-term overload, i.e., before the
Kubernetes HPA rescales the workload and critical overload
conditions.

threshold is large, metrics are sampled only in the presence
of large fluctuations. This translates into low similarity with
the original series. For example, moving from ¥ = 0.9 to
Y= 0.99, NCC drops more than half (Fig. 8 top). Correspond-
ingly, larger thresholds imply larger data savings. We compute
the amount of data volume reduction as the ratio between the
number of samples in the filtered metric M; and the number
of samples in the unfiltered metric M; (Fig. 8 bottom). We ob-
serve that while the data volume reduces linearly, the accuracy
plateaus between Y= 0.3 and y = 0.5, then drops following
a logarithmic trend. This suggests that there exists an opti-
mal trade-off between accuracy and storage overhead. For
example, at threshold 0.5, the adaptive sampler can reduce the
ingested data volume by 50% with a less than 5% reduction
in the accuracy.

6.5 Performance under autoscaling conditions

We study the performance of the sketch detector under dy-
namic workloads and autoscaling. We answer: is the sketch a
good fit for the dynamic nature of a microservice application?

We focus on autoscaling as a representative scenario of con-
cept drift. We consider the task of discriminating a transient
overload from persistent overload. With transient overload,
we refer to a temporary increase in resource demand due to
an increase in incoming request load (i.e., RPS). This situ-
ation is solved once the Horizontal Pod Autoscaler (HPA)
deploys additional service replicas to match the ingress work-
load. Consequently, we do not expect anomalies to be raised
if the HPA can respond to the increased demand. However,
because the system runtime state deviates from the fault-free



state, this scenario challenges the adaptability of FD-sketch
under realistic, non-stationary, conditions.

We run this experiment using a frontend service. We deploy
the HPA for this service and start the deployment with a
single replica. We configure the node capacity by setting
the Kubernetes control plane’s maxPods parameter, which
limits the maximum number of microservices allowed to be
scheduled on a single node. While collecting the test dataset,
we increase the load linearly by adding a new user every 25
seconds on average, e.g., starting from 11:35am as shown in
Fig. 9a. Each user generates a request every 3 seconds. We
plot this load in the gray curve in Fig. 9a, representing the
maximum CPU consumption across all service replicas.

A strawman is to train the sketch under stationary load con-
ditions, i.e., with a constant request arrival rate. We found this
strawman does not work well, as the sketch outputs numer-
ous false positives around the transient workload variations
(plot omitted). Then, we trained the sketch under variable but
controlled load conditions—i.e., without triggering persistent
overload. The results are highlighted in Figs. 92 and 9b. We
derive the following takeaways.

Takeaway-1: adaptation at runtime. During the first tran-
sient overload, i.e., before the first time the HPA rescales the
workload, around 11:45am, the anomaly score (green curve)
rises with two spikes slightly below the threshold. After the
HPA rescales the workload for the first time, the load is uni-
formly split across the available replicas. Subsequently, the
anomaly score doesn’t drop to zero but remains significantly
lower than before the scaling, indicating that yView has ad-
justed its classification to the new data distribution.
Takeaway-2: streamlined operational effort. Around
12:03pm, when the cluster enters a persistent overload state,
the red curve in Fig. 9a shows uView starting to report anoma-
lies. uView relieves platform engineers from the burden of
handcrafting per-metric thresholds. Thanks to the sketch
mechanism, with yView we only tune a single anomaly score
threshold and not a per-metric configuration.

Despite using a single threshold, Ops teams can still trace
back to the culprit metrics. In Fig. 9b we plot the top-3 met-
rics in o by decreasing component magnitudes (§ 4.1). We
see that the initial spikes before the first workload rescaling
were due to metrics that directly relate to the number of open
connections, such as container_sockets. Instead, the de-
tection of persistent overload can be explained with the metric
kube_pod_status_phase, since several pods failed to start
due to the node having saturated its scheduling capacity.

7 Discussion

7.1 Limitations

Scope of FD-sketch. While uView demonstrates effective-
ness in practice for the use cases in § 4.3, the approach in-
herits the limitations of dimensionality reduction methods.

FD-sketch primarily identifies anomalies that cause a struc-
tural deviation from the learned normal patterns. Its sensitivity
might be limited in the presence of: (i) subtle point anomalies
such as small-magnitude deviations in individual metrics that
do not perturb the overall correlation structure and (ii) train-
ing dataset contaminated by anomalous data points with high
variance from the normal behavior. yView primarily targets
anomalies that cause pronounced subspace deviations, such
as performance-related anomalies that often manifest as sig-
nificant coordinated deviations from established operational
patterns across multiple microservice metrics (e.g., system,
application, proxy) [98].

Handling abrupt workload shifts A practical challenge for
uView is distinguishing between true anomalies and legiti-
mate workload shifts caused by traffic changes, configuration
updates, or operational interventions. In the case of a legit-
imate workload shift, our approach-like other anomaly de-
tection algorithms—will initially output high anomaly scores
before the system adapts to the new baseline, thanks to metric
normalization and our probabilistic sketch update mechanism,
1. Meanwhile, the sketch may still generate numerous alerts.
To control the exported observability data volume during
such transitions, we recommend integrating uView with exist-
ing budget-based sampling policies. For example, Sifter [59]
and Sieve [52], propose methods to map anomaly scores to
sampling probabilities. Similar mechanisms could be imple-
mented by the observability hooks. The key takeaway is that
the uView’s adaptation mechanisms for FD-sketch address
baseline shifts on the longer-term, while short-term transitions
are best handled by specific sampling policies of the observ-
ability hooks. The particular sampling policy for individual
use-cases is orthogonal to sketch-based anomaly detection.
Training effort. uView, like other unsupervised learning
methods, requires a training phase in a controlled environ-
ment on fault-free data (Appendix C.2), and performs better
when tuning FD-sketch hyperparameters for each microser-
vice. This may introduce operational overhead. However, we
argue that this overhead is limited in practice. First, microser-
vice applications often have a staging environment that mir-
rors the production setup, which can be used for training.
Second, the hyperparameter tuning process is automated in
uView (Appendix C.2), minimizing manual intervention.

7.2 1Is IPU the only choice?

Our choice to run yView on IPUs is not fundamental and other
realizations are possible. However, there is an economic argu-
ment in favor of our design given current trends in cloud data
centers. Virtualization is arguably the most significant fac-
tor driving the business model of cloud providers. Profitable
CPU cycles are those that execute tenant workloads, and cloud
providers aim to maximize the use of these cycles to retain
a competitive edge in the market. Instead, uView occupies
cycles for high-resolution metrics preprocessing (§ 4.2) and



streaming analysis (§ 4.1). By offloading these stages to the
IPU, cloud providers can significantly increase the value they
offer. Moving these tasks away from the host CPUs ensures
that the latter are freed up for more tenant workloads, which
directly translates into more rentable and revenue-generating
CPU cycles. Moreover, the isolation of these monitoring tasks
within the IPUs enhances operational efficiency. Since system
metrics are handled independently of the tenants’ workloads,
there’s less risk of interference or resource contention. This
not only improves performance but also boosts reliability, as
workloads are shielded from potential bottlenecks caused by
internal system monitoring.

In the competitive cloud landscape, where every additional
rentable cycle can make a difference, this model adds clear
value. The IPU-based approach ensures that critical observ-
ability operations are efficiently managed without sacrificing
the primary goal of running tenant workloads. Consequently,
cloud providers can increase profitability while offering an
optimized service to their customers.

8 Related work

Troubleshooting microservice applications. There is sig-
nificant work on microservices observability data: trace [35,
52,87,93,100, 114], logs [80, 82, 112], metrics [98, 107], but
few have considered non-centralized processing of metrics.
Fay [33] and recently Hindsight [114] proposed retroactive
sampling but did not focus on the underlying metrics analysis
mechanisms;

Metrics anomaly detection. While root cause analysis meth-
ods need a holistic view across multiple data sources, anomaly
detection (AD) is typically based on time-series metrics and
runs online. Statistical rule-based methods [30, 70, 110] and
deep learning (DL) based methods [47,51, 103, 113] are used
to detect anomalies in large-scale systems. Unsupervised
DL-based approaches based on encoder-decoder architec-
tures [103, 104], similarly to uView, perform AD via dimen-
sionality reduction, though requiring more training data. This
aligns with the common deployment model of anomaly de-
tection, which is often performed locally on individual metric
streams, making it amenable to localized, in-situ processing.
Offloading to IPU. Recent work has demonstrated the
benefits of offloading to IPUs for network packet process-
ing [29,60,108], accelerating key-value stores [66], distributed
file systems and transactions [55, 64, 90], GPU-centric appli-
cations [102], and microservices [67]. uView differs in its
application of offloading for observability.

Sketches for telemetry. Sketches [44,68,69,77,78] have long
been explored as a fundamental primitive for network teleme-
try over sampling due to their lightweight and approximate
nature. Unfortunately, due to network flow characteristics and
hardware limitations, network telemetry focuses on counting
sketches, e.g., count-min, whereas uView explores a distinctly
different sketch optimized for online anomaly detection. Re-

cently, PromSketch [118] proposed an approximate query
cache based on sketches for time-series data, but its focus is
on reducing query latencies and costs on the collector nodes,
whereas uView targets lightweight real-time analytics on the
workload nodes.

9 Conclusion

We presented uView, a system to improve observability by
increasing metrics analysis resolution. Engineers can run
uView with custom classifiers as well as register custom ob-
servability hooks. uView triggers actionable insights about mi-
croservices’ state. uView reduces operational burden through
the use of a catch-all anomaly score threshold, improves ex-
plainability by highlighting relevant metrics that contribute
to anomalies, and enables substantial cost savings with neg-
ligible loss in measurement accuracy. uView also increases
the coverage of faulty requests compared to OpenTelemetry
head sampling policies, while keeping the overhead low. We
deployed uView on a BlueField-2 IPU and demonstrated it
can read, process, analyze and export metrics from hundreds
of microservices simultaneously, while not saturating all IPU
cores.
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Figure 10: Different anomalies propagation patterns — e.g.,
Order — Payment (bottom) and Payment — Order (top) — may
appear identical with coarse-grained monitoring.

A Resolution matters

Fig. 10 illustrates how two distinct failure scenarios can ap-
pear identical when observed through traditional monitoring
systems with coarse-grained sampling. In Fig. 10a (top), at
10:00:15, the Payment Service experiences a memory leak,
causing its memory usage to increase in 15 seconds. This
degradation causes the Payment Service to respond slowly.
By 10:00:30, the Order Service begins experiencing CPU pres-
sure as it accumulates a backlog of requests and initiates re-
tries, with its CPU utilization rising. In Fig. 10b (bottom), the
sequence begins differently. At 10:00:15, the Order Service
experiences a sudden traffic spike, causing its CPU utilization
to jump. The flood of requests from the Order Service then
overwhelms the Payment Service. By 10:00:45, the Payment
Service’s memory usage escalates to high values as its connec-
tion pool becomes exhausted. When sampled at the standard
one-minute interval (10:01:00), both scenarios present almost
identical metrics, which makes it very hard to identify the
root cause with traditional monitoring. Fine-grained temporal
analysis preserves critical timing relationships, enabling an
accurate diagnosis.

B Ingestion vs Generation experiment

Experiment Setup In Fig. 2, we (i) focus on dissect-
ing the per-node CPU overhead due to generation and in-
gestion of metrics, respectively, and (ii) evaluate how the
overhead changes for higher sampling rates. For this exper-
iment, we deployed a cAdvisor instance and a Prometheus
metrics collector on two separate nodes (details in § 6.2).
cAdvisor generates 105 system-level metrics for Docker
containers running on the same node, and is queried pe-
riodically by Prometheus running on a separate node.
We tune the granularity of generation and ingestion by
changing the housekeeping_interval in cAdvisor and
scraping_interval in Prometheus, respectively. We evalu-

ate the average CPU cores consumed by cAdvisor for different
numbers of containers. Each experiment lasts for 5 minutes.

C Sketch analysis pipeline

C.1 Summary of relevant notation

Table 4 summarizes the relevant notation used in § 4.1.

Symbol Description

m Sketch rows

l Sketch columns

k rank-k SVD truncation

o Anomaly score at ¢-th sampling time
Y Anomaly score threshold

n Learning rate

Table 4: Summary of relevant FD-sketch notation.

C.2 Offline configuration workflow
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Figure 11: Offline configuration workflow.

Fig. 11 illustrates the offline configuration workflow for
using puView. Following best practices [4,26], we expect that
Ops teams run automated tests to validate deployments before
service instances enter production. We leverage this phase
to train the u-MONITORS and tune their hyperparameters:
namely, the rank k of the sketch-based classifier (explained in
§ 4) and the anomaly score threshold 7. This is done for each
U-MONITOR, which corresponds to the number of microser-
vices.

We start by collecting a training dataset of metrics, which
we assume to be free of anomalies. We complement the train-
ing dataset with a set of metrics collected while synthetic
faults are injected (validation dataset). The proportion of
training and validation datasets is 70% and 30%, respectively.

The hyperparameters are chosen by grid-searching possible
values as follows. To pick the threshold vy, we consider the
distribution of anomaly scores over the training dataset and set
v to a sufficiently large percentile (e.g., 90-99'"). We compute
the F1-score over the validation set. We repeat this process
for each value of (k,!) and pick the ones that maximize the
F1-score (we elaborate in Appendix C.3).
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Figure 12: Anomaly score distributions of the training and test
datasets for different services of the OnlineBoutique application
and different sketch size k (but same number of metrics). The two
services exhibit very different behaviors for the same parameters,
highlighting the challenge faced by n/View of per-service tuning.

Recall uView’s sketch-based approach is adaptive to work-
load changes (§ 4). We do not expect to retrain g-MONITORS
unless the workload changes drastically. In practice, we ex-
pect to retrain the y-MONITORs only when the application
code is updated.

C.3 Hyperparameter tuning guidelines

We share our experience in tuning FD-sketch hyperparam-
eters, according to the methodology in Appendix C.2. The
goal of this section is to highlight the unique challenges we
faced while applying FD-sketch to our specific microservice
domain, which prevented us from a straightforward adoption
of the sketch with a static configuration as per original guide-
lines [65]. Our main finding is that different microservices
require individually fine-tuned sketch parameters and exhibit
very different behaviors in terms of anomaly score, even for
the same parameters. This leads to the need for per-service
tuning, as implemented by uView.

For these micro-benchmarks, we deployed the OnlineBou-
tique application and deterministically injected anomalies
only on a controlled subset of services. We report results
for two representative services, which were not touched by
anomalies. We fixed the sketch size [ and varied the SVD rank
k, i.e., the truncation size in SVD. Only k components will
be used by the detector when trying to reconstruct an input
vector. Since we assume the training data contains a base-
line of anomaly-free metric samples (i.e., non-anomalous),
a natural choice is to derive a threshold around the tail (i.e.,
high percentile) of the anomaly score distribution. We walk
through the mutual relationship of these parameters in Fig-
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Figure 13: Impact of varying sketch parameters on precision
(blue color map) and recall (orange color map) metrics. The
anomaly detection threshold is set to the g-th percentile of the
anomaly score distribution, i.e., Y= F(g).

ure 12. Here we show the results for different values of k and
different services.

Considering small values of k (Figs. 12a and 12c), we note
that the sketch tends to underfit the training data. This behav-
ior is more evident for the adservice, where the tail of the
training score distribution approaches 1, and largely overlaps
with the test distribution (i.e., the two distributions have low
KL-divergence). Under these circumstances, the definition of
the threshold 7 is challenging. If y is set to a high percentile,
the number of false negatives increases quickly, whereas a
smaller y would generate several false positives. On the other
hand, for k = 15 (Fig. 12d) the training distribution is more
concentrated around O and its support does not overlap with
the test distribution. This way, it’s easy to choose 7y around
the tail of the training distribution.

Next, we note that the sketches exhibit radically different
behavior for the two services, even for the same choice of
rank k'’. Remember that neither of the two services contains
anomalies in the test data. Thus, a good classifier would be-
have like in Fig. 12a, with the training and test distribution
closely overlapping. For the emailservice, both choices of k
lead to a healthy distribution for the classifier. On the contrary,
for the adservice the training score distribution is extremely
skewed. In this case, the sketch doesn’t generalize well to
different services for the same parameters, which motivates
our per-service tuning and design.

Detection performance. We vary the sketch reconstruction

10The choice of k as per original guidelines [47] depends on the number of
input metrics m. We collect the same number of metrics for the two services
we highlight



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

rank k, and the sketch size /, and measure the precision and re-
call of the classifier for different anomaly detection thresholds
derived from the g-percentile of the anomaly score distribu-
tion. We report the results in Figure 13. We observe that
increasing k gives better recall but lower precision. This is
because increasing k leads to a skewed anomaly score distri-
bution, which intuitively corresponds to higher sensitivity of
the sketch to metrics variations and ultimately leads to over-
fitting. For example, for k = 20, a small noise in the metrics
of the test data produces large reconstruction errors, which
increases the number of false positives and reduces precision.
This effect is mitigated by choosing a higher anomaly score
threshold. On the other hand, we observe that the recall score
benefits from more skewed anomaly score distribution, but
is generally less sensitive to the parameter k . Overall, we
observe that both precision and recall do not significantly
change when increasing the sketch size from / =25 to / = 50.
We conclude that the choice of k and ¥ should be made based
on the desired trade-off between precision and recall.

def IPU_processing_loop():

# Users can provide custom detection models
micromonitor = MicroMonitor (model = 'FD-sketch')
while True:

# RDMA read metrics

metrics = rdma_read(MR.host_addr, MR.rkey)

# Apply streaming classification and invoke hooks
- (e.g, filters)
out = micromonitor.classify(metrics):
if anomaly (out):
micromonitor.hook (metrics

# Tunable local processing frequency
sleep(local_scraping_interval)

Figure 14: Simplified pseudo-code of uView IPU local processing
in the IPU, for a single microservice.
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